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Direct Kinematics of a Double Parallel Robot Arm
for Real Time Velocity Control

Min Ki Lee* and Kun Woo Park**
(Received March 26, 1997)

The determination of the direct kinematics of a parallel mechanism is a difficult problem but

must be solved for practical application. This paper presents the efficient formulation of the
direct kinematics and the Jacobian of a double parallel robot arm for velocity control. The robot

arm consisls of two parallel mechanisms, and a central axis that generates positional and
orientational motions independently. Given a set of lengths for the linear actuators, the direct
kinematics computes the position and orientation of the end-effector, and the Jacobian trans-

forms the velocities of the end-effector to those of the linear actuators. The developed formula-

tion is implemented in a real-time control setting and its efficiency is demonstrated.
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1. Introduction

In previous researches the design and construc-
tion of a Double Parallel Robot Arm (DPRA).
its inverse kinematics (Lee, 1995a) and dynamics
(Lee, 1995b) have been studied. In this paper, the
direct kinematics and Jacobian will be derived for
velocity control. A six Degree-of-Freedom Paral-
lel Manipulator, PM referred to as a Stewart
Platform (SP), has six legs forming multiple
closed loops and yielding highly nonlinear equa-
tions for the direct kinematics with multiple solu
tions (Innocenti and Parenti-Casteui, 1990 ; Merlet
1993). Due to the complexity, Sugimoto
(Sugimoto, [987) presented a numerical solution
method, while Raghavan (Raghavan, 1991) der-
ived a set of Geometric Constraint (GC) equa-
tions to solve for the roots, and Merlet (Merlet,
1993) described the position representation in
terms of the orientation to reduce the order of the
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GC equations ; their roots are convergent only in
limited ranges, however. To simplify the GC
equations, extra sensors are installed at passive
joints to measure the GC motions (Cheok, Over-
holt, and Beck, 1993). However, adding sensors
increases the possibility of link interference that,
in turn, causes a reduction in the useful volume of
the workspace. Therefore, the position and orien-
tation are decoupled to diminish the order of the
equations by a minimum number of sensors
(Baron and Angeles, 1994 ; Zanganeh and An-
geles, 1995).

In this paper, we separate the direct kinematics
of the DPRA into a
orientational part without adding any extra sen-

positional and an
sors, 1. e.. in the first PM, the GC equations for
position are derived for a set of three lengths of
legs, whereas in the second PM the GC equations
for orientation are derived for a set of two lengths
of legs. Since the order of the GC equations is
only two or three, the computation solving for the
roots of the equations is greatly reduced. More-
over, from the simplified DPRA, we find the
approximate roots, which are close to the real
ones, and substitute them as initial values of the
Newton iterative method for a high rate of conver-
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gence.

The real time direct kinematics is applied for
velocity control. We must derive the Jacobian
which can transform the given velocities of the
end effector to those of the linear actuators. Screw
theory (Mohamed and Duffy, 1985) has been
applied to a Stewart Platform, and a 6 X6 square
Jacobian matrix is found to transform six compo-
nents of velocities (linear and angular velocity)
of the platform to those of the six linear actuators.
But in the DPRA, two or three links support the
platforms, so that the six components of the
velocity of each PM cannot be directly transfor-
med due to a non-square jacobian. This paper
1987) to
transform velocities, and combines them to find
The direct

Jacobian are implemented in a real time control

uses motor vector algebra (Sugimoto,

the Jacobian, kinematics and the

setting to evaluate the performance of the DPRA.
2. Geometric Modeling of the DPRA

As shown in Fig. 1, for i=I, 5, leg i is
connected from B, to P. which are placed at the
base and platform, respectively. By;_,,5 and
Pig-1,2,3 are located symmetrically 120° apart and
l[mllzm and | (j:;ﬁH:VPh while By, and
Pii_4,5 make angles ¢ and ¢ with the horizontal,

respectively, and |(0,B:|=rp and [[OsP:|=rps.

Second |
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Fig. 1 Double Parallel Robot Arm,

Ogi-0235 are the central points of the base and
the platform. Leg i are the link train of U,-
n;;-PRj,-n;,-Uy, as shown in Fig. 2. Universal
joints U;; provide 2-Degree-Of-Freedom (DOF)
in 4, and @, while prismatic and rotary joints
PR;, give another 2-DOF in g, and g,. Finally,
2-DOF corresponding to g5 and 4, are added by
universal joints Ujs. @s-12456 are all passive
joints but the active joint &, shortens or extends
the length of 3,P. by means of a Linear Actuator
(LA 1). To increase the range of the universal
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Fig. 2 Linear Actuators and joints of Leg i.
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Fig. 3 Central Axis,
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joints, offset links are inserted in the upper joints
U125 of the first PM and the lower joint
Uig=4,5 Of the second PM. To avoid singularites
(Gosselin and Angeles 1990}, the direction of
joints @, are mutually perpendicular to those of
the lower joints §,, while the directions of  are
perpendicular to the upper joints g; fori=1,---, 5.

A central axis is the link train composed of all
passive joints as shown in Fig. 3. In the center of
Base-1 is located the central axis which constrains
Platform-1 to rotary motions 4 and §, by a
universal joint U, and the sliding motion ¢; by a
prismatic joint P, Platform-2 is also constrained
to rotary motions ¢, and & by a universal joint
Us. B.-12. Which position the Platform-1. are
driven by the GC of the first PM and the active
joints a1z While .45, which orient the
Platform-2, are driven by the GC of the second
PM and the #sq-s5. Therefore, the position and
the orientation motions of the DPRA are in-
dependently generated and decoupled from each
other. For a six DOF link train, an active joint
R, is mounted on Platform-2 to yield a rotary
motion & Consequently, the central axis includ-
ing joint R, is considered as a six DOF serial
manipulator.

To analyze the joint motions of the central axis,
we assign coordinates {i} to points Q; for i=0, I.
---, 6 as shown in Fig. 1. For a given position and
orientation of {6} relative to {0}, the joint dis-
placements of the central axis are obtained by

("000s. "Re) = Kin_center (6, -+ 65 (1)

where (), is the position vector and *¢, is a 3
x 3 rotation matrix. The left superscript indicates
the coordinate which describes the position vector
or the rotation matrix. Kin_cenfer (- ) is the
direct kinematics of the central axis. which is
identical to that of a serial manipulator. In the
DPRA, the positions and orientations of coordi-
nates {3} and {5} are decoupled by

"0y, “R) =Kin center (6. B 6 (2)
(20,05, *Rs) = Kin_center (0s 05) (3).
The GC displacements ....5 of the central axis

involved in the above equations can also be in-
dependently described by

O:=first_const i(Ohs, O Gy) (i=1, 2, 3) (4)
0,=second const i(Qy. thy) (i=4.5) (5)

The direct kinematics problem is to find first
const i( -} and second const i{ - ). which are
the first and the second GC equ_alions, respective-
ly, using the GC conditions in each PM. Notice
that the equations are a function of two or three
lengths, so their orders are lower than those of the
SP (Raghavan, 1991). If are measure the joints of
the central axis with extra sensors. we can directly
obtain the direct kinematics by Eq (1).

3. Geometric Constraint Equations

In order to derive the GC equations. we find
the closed loops the first and second PM. Three
loops of OyB,P,0,, OB,P,0; and O,B,P,0; are
involved in the first PM, and two loops of O,B,
P,0O; and O,BP;0; in the second PM. Position

first PM are

J3

WOO—B-I):{-%* T"’BJ‘ 0},
OB, =~ D . 0),
‘Tﬁ(}?}::{ ¥Bls 0» O} (6‘1)
and
. v/"}

_ Vp
3 3 "1:{‘75L~ ’j’i’m, 0},

3();;[2>:{ **}%}1\ - {23 ¥pPi1s 0},
0uPs={rp1. 0. 0} (6b)

From Eq. (2). we can write

T)ﬁ()()();'—' { Os502, — sO (cp+ Gic6s) .
cO (cp+ Oscby) )} (7
and from Kin leg i(0n, Gw 6:3), which is the
direct kinematics of leg i, we get

OBzP;:{gsz(}zz’ — G lcp+ GiscBis)
O (cp+ Omclio) ) (8).
Since 90, is located in the center of Platform
-1, and B, and P, are symmetrically 120° apart, the
relations between 3,7, and "0,0; is

"0305=1/33 B, ).

The above equation represents three GC relations
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including nine unknowns such as g, ¢, and (.
for i=1, 2, 3. Thus we need six more GC relations
as follows : from the closed loops O\O;P,B, and

[

0,0;3P;B,, °P\P, is determined by
VP = (OB, + BT — (OB +BiF)
:0R3(303P2*303P1) (lO)
Correspondingly, from the closed loops O,0,4P,B,
and O,0,P,B;, °F7 is

:ORS(HA()sPa*é»Oa—P);) (l l)

To simplify the equations, the following variables
are defined :

Cbizﬁis 6’952, Sbi:eig 56{2

ssi=(cp+cbi) st coi= (cp+ cby) cOn
where ¢ (+) =cos(+) and s(-) =sin(+). Substitut-
ing the variables into GC Egs. (9)-(11), we solve
for them,
Then the definition of gs; and ¢¢;. yields

chi=1ss?+cct—cp (12)
If -90° < g,<90°, ¢h; are always positive. So, we
can take only a positive square root for a unique
solution. Referring to ¢b?+ sh?=0%. three GC
equations are derived by
cfi=sbi+ chi—~ 05=0 (i=1. 2, 3) (13)
These are the third order simultaneous equations
given in the Appendix to compute the joint dis-
placements of the central axis for a set of G-1.23)
second const i( - ) is also derived from the GC
motions of the closed loops in the second PM.
When 4,=|0,0|, 20,05 obtained from Eq. (3)
is converted to
75‘()5?2’: ’SRZZOZO::{ZZS@;» ‘3‘6’5((/1)
+ bcby) . ’(,'(95(6‘[)4'/26‘64)} (14)
From the direct kinematics of Kin leg i(f:, 6
O), We can write
FPBi={0:550:. — s0:s(ch+ Orssio).
- C@[s(dH’ 61‘3(,‘91‘6)} (15)

Also, from the closed loops 0,0;P,B, and 0,04
P.B;, °P.B; can be expressed as

75

FPBi= 050, +°R:* 0. B; = Os P: (i=4, 5)
(16)
Substituting Eq. (14) into Eq. (16) and solving

for $@isu-45 and cOssq-q5 of the resulting x-and y-
component equations :
=90 ° < Bijso5.0< 90 °  for
+ lAs()f;- and substituting ¢g,; and s§,; into the
z-components of Eq. (16), we get
ofi= CP.B) 2—comp— (P05 02 +° R 01 B;
—505P) 2-comp=0  (i=4, 5) (17)

The above equations are the second order GC

Restricting cl=

equations given in the Appendix to compute
=45 for a given set of Gugz,s).

It is noted that the GC equations of the DPRA
are expressed as second or third-order simultane-
ous equations, reducing the computation burden.
Moreover, since the solution is unique by taking
only a positive square root, we do not have to sort
the solutions. However, the GC equations were
not expressed in explicit form, so that Newton’s
numerical method is applied to find the roots of
the equations. For better convergence, an approx-
imate root close to a real root is obtained from
the simplified DPRA and used as an initial value
in the numerical method.

Simplifying the DPRA with ¢p=0, ;=0 and
rg;=0, we get the GC equations of the first and
second PM as follows :

Cf10:032— ve1GhsOicos + 7810550: + 7B’ — O

J3 3 9
o= 0 — 7’31(9;87(9;@+ 7’81(23352 + 7512 G
(13)’

2 . o P
Cfs():@szf 731535(92+ 131 ‘19332
Cf40:2lzVPzC&xS&ssz‘2/27’;3256’4(352+ 122
+ el rpltc2t— O
C‘fs‘): - 212 7‘P2C948556'§2 -2 b 7P28(94C§2 + [22
+ 7’P22+ 7’1’226‘2 é'z* 19532 (17) !
From the simplified equations, we solve for #;
and let it be #? to distinguish from the real roots.
For the Newton iterative forms, the GC Egs. (13)
and (17) are written, respectively, as

Fi [Xl] =0, Fz[Xz] =0

where, Fi\=[cf cf> cfs]” Fo=[cti cfs)"
Xlz[gl s 53]Ta Xzz[@x 195JT

The classical Newton’s method for the solution of
the GC equations yields
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oFp(X5)
gy-L] Fo(Xf) (0=1.2)

(18)

Xle X[;z [

Here, [0F, (X}F)/0X,] " requires much computa-
tions due to the matrix inversion operation. But if
X§ are substituted by the initial values [ 8 & 87
r [8) 6017, they can be regarded as constant
while converging (Merlet, 1993). Therefore. we
let J9'=[0F, (X} /0X,] " and repeat the iter-
ative computation until the error becomes negligi-
bly small. The iterative computation with con-
stant matrices is never divergent except at the
boundaries of the workspace where the initial
values from the simplified DPRA are extremely
different from the real roots. Once we find real
roots X1=[6 @& 67 and Xo=[6, &7, we
substitute g;(i=1, 2, ---, 5) and &, into Eq.(1) to
compute the position and orientation of the end-
effector.

4. Velocity Control

The velocity control of the PM is performed in
the tool base, so that we have to transform the
velocities of the end effector to those of LA i. In
the DPRA, the six components of the velocity of
the platform cannot be directly transformed by a
square Jacobian matrix because only two or three
legs are installed in each PM. We instead use a

|——.)—-n
=

platiﬂd

&

Mu ' 6ii= 1

’—f

a

{:G_,__

T F Basei___

Fig. 4 Motor vector.

motor vector opproach 1o obtain the formulation
for transforming velocities.

We depict a motor vector as shown in Fig. 4.
When the j-joint @; of link train ; is actuated by
unit velocity, the angular and linear velocities of
the platform are © and V. respectively. Then the
motor vector of joint ;j of link train ; is defined by

My=[(Q VI’ (19)
With the motor vector, the velocity of the end
effector of the DPRA, Endvel end, can be expres-
sed as

Endvel end =0, M,+ -+ ;M +-+ (M5 (20)

where @125 are the joint velocities of the
central axis and M;i-1.,..¢ are the corresponding
motor vectors. Let /. be Jacobian matrix relating

Oi=1.2.9 1O Endvel end. We get
Endvel end=]. @ (21)
where J.=[ M, My M;] is a 6 X 6 matrix and €

=[G G . 67 is a 6x1 vector. ¢ can be
actively generated, but Gy-1,..5 must be driven
by 8, of LA ij-1..5 To find . the velocities

of Py.,0. 5 are computed as

Endvel P,=0,'Mi+ G Mo+ 65'M, (i=1, 2, 3)

(22a)
Endvel Pi=@,M,+ 6s'Ms (22Db)
where i), are determined from the relations
between the velocities of points P; and the unit
velocities of the joints of a central axis, Also,
Endvel P; can be obtained by motor vectors

(i=4, 5)

between P; and j-joints of leg i. L. e,

Endve/ P 911M,1+(}zz M12‘+ (913 M”

(i=1, 2, 3) (23a)
Endvel P;= 01" M+ -+ 0 My+--

+ 0’ Mis (i=4,5) (23b)

Note that Endvel P; of the first PM is affected
only by the velocities of the upper joints @ -3
but Endvel P; of the second PM is influenced by
the velocities of §;-124 as well as the lower
joints @,;;-.s.4 because of the offset links inserted.
Therefore. the ‘}; and ‘M,; of the first PM must
be 3x 1 motor vectors to compute the linear
components of Endvel Py_,.z whereas the ‘M,
and “Af,; of the second PM must be 6 x| motor
vectors to obtain both angular and linear compo-
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nents of Endvel Pyi_.s. Let 'Jo=["M, ‘M> "M-]
fori=1,2,3, . =['M, ‘M) fori=4,5. 6,=[6
& 6,17 and ©,=[ 6, 6]7. Eq. (22) can be rewrit-
ten as

Endvel p,=i]. @, (i=1, 2, 3) (24a)

Endvel P,=']. @, (i=4,5) (24b)
When defining °J,= M, ‘M, *Ms] fori=1,2.3,
and J;=['M: ‘My--Msg] for i=4, 5. we can
compute joint velocities of leg t for a given
Endvel_Ph 1. e.,

@i:i];' Ena’veliPi (i=1, 2, 3)

@,=']7" Endvel P, (i=4,5)

(25a)
(25b)
For velocity control, only the §;; are chosen out
of @;=1[0n i 051" fori=1,2.3 or @,=1[0u Gy,
O+ 0i6]7 for i=4, 5. When the row vectors of
/771 are defined as follows

[iSlT ,‘SZT z‘SaT]Tzzjl—l fO[‘i:l,Z,}

(ST ST 'S i8d )T ="J;" for i=4,5
the active joint velocity §,; will be

Br=1S, Endvel P, (26)
Combining Egs. (21), (24), (25) and (26) yields

[Ois Gos s Gas Bss G:)7=A B Jo! E”d"e[_end
(27

where A and B are 6x22 and 226 matrices,
respectively. They are

1S, |
28, Ouzxa
3¢
A Ss "
S3
092 *Ss
(. l -J
_ . _
27 Ouxs)
3
B=| Jo |
Je
O<12x3) 5]0
L I

and, the Jacobian, which is a 6 X 6 square matrix,
s

J=A B J;! (28)

The Jacobian requires considevable computation
because of the offset links. If they are short

enough to be negligible, we can directly compute

‘Sy by projecting Endvel P; in the direction of

LA 11 e,
G B:P;
P IBA

‘Ses» Which are simplified vectors of S, can

(29)

reduce the computation i.e., the inverse matrices
included in matrix A. Also, ISy are always 3x |
vectors so that only the linear components of
Endvel P;;_,5 are necessary.
‘Migi=as and ‘M -45 are 3x 1 motor vectors
and .45 are defined by 3 X2 matrices, 1. e.,

Therefore,

Tse=["Ma 'Mss] (i=4,5) (30)
The Jacobian is simplified to
J5:As Bs ](71 (28)/

where A, and B, are a 6x16 and a 16x6
matrices, respectively.

The Jacobian requires passive joint displace-
ments of a central axis and leg i, which should be
computed by the direct kinematics. Thus, the real
time direct kinematics and the Jacobian must be
implemented as shown in Fig. 5.

The controller sets up Endvel end, and com-
putes initial values from the simplified GC equa-
tions with the measured 4,;. The initial values are
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Fig. 5 Flow chart of velocity control.
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Table 1 Computational time of velocity control.

Step Process Computation Time(m-sec)
1 Initial Value X3. J) 0.08
2 Newton’s lteration |[f, (X5t")| < error 2.09
3 Direct Kinematics of Central Axis kin_center 0.5
) (O s - 06 o
4 Jt 0.40
. . . . Velocity obtained . . .
Velocity obtained Computation Time ; Computation Time
. . by Simplified
by Full Jacobian (m-sec) : (m-sec)
Jacobian
5 A 3.01 A, 0.11
6 B 0.82 B, 0.66
7 ABJ:! 0.99 ABJ ! 0.71
Total | 7.64 43

substituted into Newton’s method and the conver-
gent roots are obtained by iterative computation.
With the obtained roots, the direct kinematics of
the central axis computes the position and the
orientation of an end effector. We compute the
Jacobian matrix and transform the Endvel end
to the @, They are converted to velocity com-
mands and sent to servo motors to execute the
velocity control. The controller follows the above
steps until the stop key is pressed.

Table | presents the computational time of each
step for velocity control. A total time of 7.64 m
-sec is fast enough for real time control, but the
burden of computation is caused by the A and B
with the offset links. If A, and B, are applied, the
computational time is reduced to 4.3 m-sec. The
results of velocity control show that the simplified
Jacobian produces better performance than the
real ones from fast computations.

5. Construction of DPRA and
Analytical Results

We constructed the DPRA for a grinding robot
as shown in Fig. 6. The payload is 100kg with a
weight of 150kg, the sliding ranges of the LA i
are 754mm < G5 (1==1, 2, 3) < 1128mm, 630mm<
G:3(i=4, 5) < 800mm, and the range of the rotary
actuator is — 180° < #;< 180°. The sliding motions

Linear
Actuator

Revolute
Actuator

Grinding Work

Fig. 6 Grinding Robot System using the DPRA
(Constructed in Changwon National Univer-
sity).
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z=830 (06 m%

Fig. 7 The section of Positional Workspace of the
DPRA.

are generated by ball screws with Smm leads,
while the rotating motion is from the worm gear
whose reduction ratio is 1/90. Design parameters
are ry; =250, 1p, =80, rp, =80, rpy =150, cp=20,
=20° and =45

Figure 7 depicts the section of the positional
workspace with the z- plane. The positional
workspace is the volume which the Platform-1
can reach when the lengths of LA ij_,,s are
changed from the minimum to maximum. The
section consists of areas, A; min a0d A, max» closed
by S; min @and S; qax Which are the curves of the x
-y positions of the Platform-1 placed by maxi-
mum and minimum lengths. Reachable positions
are located inside all A; ., and outside all A, p,.
so that the section of the workspace is the intersec-
tion of 3 annular regions.

The volume of the workspace of the DPRA is
approximately equal to 0.3664m?.

The orientational workspace is defined as the
pose of Platform-2 with respect to Base-2, which
is (6 65), generated by the LA 1 5. Fig. 8
shows S; in and S; nax. Which are the curves of
the §,— G angles of the Platform-2, generated by
minimum lengths. The
orientational workspace is the intersection of the
two regions between S, i and S, 5. for i=4 and
5. The result shows that the ranges of g, and &
are more than 60°.

and maximum

To demonstrate the advantage in workspace,
the workspace is compared with that of the SP in
which the leg ig-,..5 are installed between Base

Fig. 8 The section of Orientational Workspace of

the DPRA,

Fig. 9 The Section of Positional Workspace of
Stewart Platform.

Fig. 10 The Section of Orientational Workspace of
Stewart Platform.

-1 and Platform-1 without a central axis. All the
design parameters of the leg i are the same as
those of the DPRA. For the minimum and maxi-
mum lengths of LA i (_;..¢, closed curves of
St min and S; nay are shown in Fig. 9. The section
of the workspace is the intersection of 6 annular
regions and the volume of the workspace of the
SP is 0.330m>.

The orientational workspace is compared with
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that of the SP. Here the roll of the DPRA is not
sonsidered because its driving mechanism is
different from that of the SP. We define (@ £)
representing the yaw and pitch motions which are
the pose of the platform with respect to the base.
As shown in Fig. 10, twelve curves S; , and
-, 6, are obtained on the ¢-4
plane determined at the minimum and maximum

St max fori=1,2, ..

lengths of LA i. The orientational workspace is
below 50°. It is the intersection of six regions
between S; min and S; nax. The comparison of the
workspace shows that the increase in the number
of legs between bases and platforms increases link
interference and decreases the workspace.

An array of points of Q, is plotted for
positional workspace as in Fig. |1, and the rota-
tions of -4 are for an orientational workspace
as in Fig. 12.

5001
i jne
l ¥-1 Piane
| AN
RN N
\___‘_//
mcl et .
- 1000 [ 1000 ~1000 oy 1000
Fig. 11  Positional Workspace.

Fig. 12 Orientational Workspace.

The Hai-1.0.3 generate the positional workspace
1000mm  and
2000mm, respectively, excluding the regions of

whose height and width are

interferences. At any interior position, the
orientational workspace is independently generat-
ed by the fs-45 and its ranges are from —60° to
60°, respectively. This solves a major problem in
waorkspace of the parallel mechanism.

The velocity control is executed by implement-
ing the direct kinematics and the Jacobian. When
we move the robot from {{—600, 0, 1200}, {0, O,
0}} to {{600, 0, 1200}, {0, 0. O} with Endvel end
=200mm/sec, the velocity profiles of the end
effector and the LA i are shown in Fig. 13.
Correspondingly, Fig. 14 depicts the position
profiles in the x-y and x-z planes. The LA i
accelerates and decelerates the DPRA in 0.1 sec-
ond even with the large payload of 50kg. This
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Measured Torques

Computed Torques

Fig. 15 The computed and measured torques acting
at the motors of linear actuators.

demonstrates that the dynamic response is very
fast due to the small inertia of the parallel mecha-
nism.

During velocity control, the end effector devi-
ates from the desired path within 0.1 mm, but
these deviations are acceptable for deburring
work. The deviations are precisely influenced by
the computational times of the direct kinematics
and the Jacobian. If there is long delay in trans-
forming the velocities, the velocity commands
cannot be rapidly generated at the current posi-
tion. Therefore, the simplified Jacobian yields
better performance than the real Jacobicn even
though there are errors in the velocity commands
by ignoring the offset links. To reduce the devia-
tions, we control the position of the end effector
by position control, which is easily implemented
by the inverse kinematics.

Figure 15 shows the computed torques by the
Jacobian and the measurment acting at the motors
of LA i when the grinding force and moment are
300N and 60N-m, respectively, and the payload is
50kg. The torques are less than 1.6N-m, so that
the DPRA can be constructed with small motors
for a high ratio of payload to weight and low
power dissipation.

6. Conclusion
This paper developed algorithms for the direct

kinematics and the Jacobian of a double parallel
robot arm. We decoupled the motions of the

robot arm into a positional and an orientational
component, and the geometric constraint equa-
tions of each part are found. The equations are
the second and the third-order, and their solution
1s always unique by taking positive roots. For
tool-based velocity control, we derived the
matrices transforming the velocities of platforms
to two or three linear actuators at each parallel
mechanism and combined them for the Jacobian
considering the geometric constraints of a central
axis. The algorithms of the direct kinematics and
the Jacobian are successfully implemented in the
velocity control of a grinding robot.

The orientational as well as positional work-
space of the double parallel robot arm is compar-
ed with that of a Stewart platform. The small
number of linear actuators installed in the paral-
lel mechanism enlarges the intersection of the area
of the workspace, and increases the volume of the
workspace by 10% over the Stewart platform.
Also, orientations are independently generated at
each position since the orientational workspace is
decoupled from the positional workspace. This
solves a major problem in the workspace of
parallel mechanisms which cannot attain a
required orientation even at a reachable position.
The parallel mechanism of the DPRA reduced the
inertia and distributed a toad so that the dynamic
response is fast and the torques acting at the
motors are below 1.6N-m with a payload of 50kg.
Therefore, the DPRA can be applied as a robot
arm, which requires a wide range of workspace,
high stiffness, high ratio of payload to the weight,
and low power dissipation.
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